MHD

La MagnétoHydroDynamique est une méthode de propulsion encore considérée comme expérimentale, fondée sur les travaux de l'anglais Michael Faraday.

Le principe de la MHD, non envisageable dans le vide, consiste à faire circuler dans le milieu entourant le mobile un courant électrique. Le mobile, en même temps, va émettre un champ magnétique. Selon la loi de Laplace, ce champ va exercer une force sur le courant, et donc sur le milieu où il circule : c'est le principe de la plupart des moteurs électriques. Le milieu étant ainsi déplacé par rapport au mobile, c'est en fait celui-ci qui, par réaction, subira une force permettant de le propulser. Encore faut-il faire apparaître les champ et courant nécessaires :

La propulsion dans l'atmosphère, sans hélices ou réacteurs, est donc en principe tout à fait possible par MHD, et le calcul montre que la puissance nécessaire n'est, dans certains cas, pas incompatible avec nos moteurs aéronautiques actuels s1COMETA, 1999.

Les premiers travaux sur la propulsion MHD, avec ionisation d'un gaz, datent de l'immédiat après-guerre et ont sans doute été envisagés sommairement avant 1939 s2Sutton, G .W. & Sherman, A: chapitre 13 (24 pages) de leur ouvrage, intitulé magnétohydrodynamic propulsion, Mac Graw Hill 1965 — fait le point sur la question à l'époque. Concepts de base, détails de calculs et des comptes-rendus d'expériences effectuées à l'aide de torches à plasma, Demetriadès et Ziemar 1960. s3Petit, Jean-Pierre: 1996.

Kulsrud (1958)

Donald Menzel en 1962, traitant de MHD      s4[AIP Emilio Segre Visual Archives]
Donald MenzelMenzel, Donald H. en 1962, traitant de MHD s4[AIP Emilio Segre Visual Archives]

Dans un rapport à l'American Rocket Society, le physicien de l'Université de Princeton Dr. Russell M. Kulsrud a indiqué que le nouveau domaine de l'"hydromagnétique" (anciennement appelée magnétohydrodynamique) pourrait aider à résoudre le problème de la réentrée de missile s5UFO Investigator, 1: 8, décembre 1958. Dans les dispositifs de fusion nucléaire (bombes H par exemple) les champs magnétiques sont utilisés pour maintenir les gaz électrifiés à distance des murs d'un conteneur suffisamment long pour que la réaction nucléaire puisse avoir lieu. Le même principe, dit-il, pourrait être utilisé pour détourner les gaz chaud générés par les appareils plongeant dans l'atmosphère. Le docteur Kulsrud, qui travaille sur le projet Matterhorn de physique des plasma à Princeton, a également dit que le concept de science-fiction de l'utilisation de "champs de force" pour repousser les objets arrivants devenait une réalité en hydromagnétique.

Le premier brevet sur la propulsion MHD en milieu marin date de l'année d'avant, déposé par l'américain Rice. En l'année suivante, un 1er rapport sur le sujet est rédigé par un autre américain, du nom de Phillips.

Way

Schéma du sous-marin de l'ingénieur américain S. Way, publié par l'ASME en 1964
Schéma du sous-marin de l'ingénieur américain S. Way, publié par l'ASME en 1964

Un autre rapport est signé du Dr. S. Way, consultant pour les laboratoires de recherche de Westinghouse à Pittsburgh, publiée en 1964 par une importante association technique américaine, l'American Society of Mechanical Engineers (ASME) s6Jean-Paul Thibault, chercheur au Laboratoire des écoulements géophysiques et industriels de Grenoble. L'étude de Way a pour titre Propulsion de sous-marins par les forces de Lorentz dans un environnement marin et est présentée à la réunion annuelle de l'ASME du dimanche 29 au vendredi 4 décembre 1964. Ce texte de 8 pages décrit le schéma de principe de la MHD marine, avec formules mathématiques et tableaux chiffrés. Way y fait référence aux études antérieures de Rice, Friauf, Phillips et Bryson, ainsi qu'à un papier récent du lieutenant Doragh qui, selon lui, renouvele la question.

En 1966, Way teste avec succès sa théorie avec un sous-marin en modèle réduit de 3 m de long et de 400 kg, dans la baie de Santa Barbara (Californie).

Le lundi 22, un article de Aviation Week & Space Technology indique comme Northrop compte remédier au problème du bang sonique grâce à la MHD s7Way, S.: "Electromagnetic Propulsion for Cargo Submarines," article 67-363, AIAA/SNAME Advanced Marine Vehicles Meeting, Norfolk (Virginie), 22-24 mai 1967 s8Way, S.: Devlin, C., "Prospects for the Electromagnetic Submarine," Paper 67-432, AIAA 3rd Propulsion Joint Specialist Conference, Washington, D.C., 7-21 juillet 1967 < Bourdais, G.: "Les premières études de propulsion MHD", février 2002..

Friedman

Viennent ensuite des textes du physicien nucléaire et ufologue Stanton T. Friedman dans lesquels il évoque la propulsion MHD dans le milieu aérien : d'abord un article de le mois suivant dans la revue Astronautics and Aeronautics (revue de l'AIAA), où il écrit :

Une étude de la littérature et une extrapolation de la technologie existante suggèrent que, moyennant un effort considérable, une approche EM entièrement nouvelle pourrait être développée pour le vol hypersonique qui, par bien des aspects, dupliquerait les caractéristiques des ovnis.

Puis sa déclaration au Symposium sur les ovnis en juillet 1968. Il y parle du sous-marin de Way et qu'il suffirait d'extrapoler la théorie de la MHD sous-marine développée dès 1964 par Way dans l'atmosphère (parlant alors de "magnétoaérodynamique") pour ouvrir une nouvelle piste quand au mode de propulsion des ovnis. A la question : Se pourrait-il qu'ils soient liés à un moyen de propulsion ? Il répond : Il y a un nombre considérable de travaux disponibles concernant la magnétoaérodynamique. J'ai reçu une bibliographie de la NASA avec plus de 3000 références. La référence 39 contient le résumé de plus de 300 publications traitant des interactions entre véhicules et plasmas. Une bonne partie de ce travail est secrète car le nez des ICBM est entouré de plasma. En tous cas, il y a un corpus technologique que j'ai étudié et qui me conduit à croire qu'une approche entièrement nouvelle pour la propulsion à grande vitesse dans l'air et dans l'espace pourrait être développée, en utilisant les interactions entre les champs électriques et magnétiques avec des fluides conducteurs adjacents aux véhicules pour produire une poussée ou une sustentation (poussée ou soulèvement), et réduire ou éliminer d'autres problèmes de vol hypersonique tels que la traînée (drag), le bang sonique, l'échauffement, etc. Ces notions sont basées sur la technologie existante, telle que celle figurant dans les références 40 à 49, bien que l'on puisse s'attendre à ce qu'un effort considérable de développement soit nécessaire.

Meessen

Les premières publications de Auguste MeessenMeessen, Auguste sur la propulsion MHD datent de 1973, dans les numéros 8, 9 et 10 de la revue Inforespace de la SOBEPS. Dans le n° 10, Meessen fait état des travaux de Way et Friedman :

Nous avons appris entre-temps que le physicien américain S. T. Friedman admet également que la physique des plasmas pourrait intervenir dans la propulsion de ce qu'il appelle des "modules d'excursion terrestre". Il suppose (comme dans notre premier modèle) qu'un champ magnétique exerce une "force de Lorentz" sur des courants ioniques et il rappelle également l'existence du sous-marin électromagnétique expérimental de Way.

Ces premières études du professeur Meessen sont également mentionnées dans le livre de Michel Bougard, Des soucoupes volantes aux Ovnis, paru en 1976 en Belgique. On sait qu'il a continué à développer ses idées sur la propulsion MHD, dont on peut se faire une idée dans le livre récent de Jacques Dumont, OVNIS : Un 1/2 siècle de recherches.

Les études de propulsion marine sont apparemment laissées de côté jusqu'à la fin des années 1970s car on ne sait pas encore fabriquer les bobines nécessaires à la production des importants champs magnétiques réclamés par la MHD s9Jean-François Augereau, Le Monde. En l'occurrence, le sous-marin en modèle réduit de Way se déplaçait très lentement, comme on peut le voir sur une vidéo produite par Friedman. C'était d'ailleurs un modèle simplifié qui ne comporte que deux électrodes .

Petit

Jean-Pierre Petit a également exposé ses recherches sur le sujet à de nombreuses reprises dans ses livres et dans ses articles. Il commence à étudier des lettres ummites en 1974 et y trouve le principe de la propulsion par la MHD s10Petit 1991. Dès l'année suivante il publie une première note aux comptes rendus de l'Académie des Sciences de Paris, intitulée Convertisseurs MHD d'un genre nouveau, puis une deuxième note en l'année suivante avec Maurice Viton, présentant cette fois l'idée d'accélérateur MHD à champ magnétique alternatif.

Ummites ?

Se pose ici la question de l'antériorité de la lettre ummite par rapport aux études déjà publiées. Nous trouvons la lettre en question dans le livre d'Antonio RiberaRibera, Antonio, s11Ribera, A.: s12Les Extraterrestres sont-ils parmi nous ? 2ᵉ édition française, 1991, Editions du Rocher. Selon Ribera, cette lettre de 43 pages, évoquant brièvement la MHD, fut reçue par l'ingénieur en bâtiment Enrique Villagrasa le mardi 9. Selon d'autres sources, elle a été reçue le dimanche 9 juin 1968 et non pas le 9 janvier. Si c'est exact, le 1er article de Friedman, paru en février 1968, lui est antérieur.

Progrès publics

En avril 1991, la revue Science & vie fait sa une sur le sous-marin MHD. Suit un article qui évoque les percées récemment réalisée dans ce domaine : les navires de surface et les sous-marins vont connaître bientôt une véritable révolution, grâce à la propulsion électromagnétique, découlant des progrès récents en matière de supraconduction. On y parle d'un projet japonais de brise-glace sans hélices, propulsé par la MHD. Ce projet s'appuyait sur les résultats d'essais d'une maquette de 3,6 m de long pesant 700 kg, réalisée en 1979 par l'université de la marine marchande de Kobé, et qui tenait compte d'une maquette précédente, réalisée en 1976 s13Bourret & Vélasco: 1993. L'article comporte une photo d'une vedette construite par les japonais, prête pour les essais, équipée de 2 propulseurs MHD, identiques à celle que Jean-Pierre Petit a fait naviguer 10 ans plus tôt dans un petit bassin d'eau salée sur le plateau de l'émission Temps X de TF1. Une illustration décrit l'accélérateur pariétal que Petit à expérimenté en l'année d'avant, sans le mentionner s14Petit, J.-P.: 1991.

Ce sont les progrès réalisés dans le domaine des matériaux supraconducteurs qui ont permis de reprendre dans de meilleures conditions ces études de propulsion marine par la MHD. Les japonais, en pointe dans ce domaine, ont pu construire une vedette de 185 t et longue de 30 m environ, le Yamato 1, qui a navigué avec succès le vendredi 19 dans la baie de Kobé. Les américains, eux, sont sans doute les plus avancés, les plus innovants, dans ce domaine grâce aux travaux qu'ils mènent notamment au Naval Underwater System Center de Newport et au Laboratoire d'Argonne. On suppose d'autre part que les russes ne sont pas restés les bras croisés dans ce domaine. En France, la recherche s'est organisée également, au laboratoire de Grenoble déjà nommé, avec le concours de la société Jeumont-Schneider Industrie, et avec la collaboration de 4 laboratoires de l'INP associés au CNRS s15Jean-François Augereau, Le Monde.

s16Camac, M.: "Plasma propulsion for spacecraft", Aeronautics 4, octobre 1959 s17Corliss William Roger: "Propulsion systems for space flight", Mac Graw Hill Book Company, 1960 s18Gourdine, M. M: "Recent advances in MHD propulsion", Americal Rocket Society Journal n° 31, 1961— Equations, calcul théorique des performances, différents types de propulseurs (Faraday et Hall), propulseurs à plasma pulsé, propulseur sans électrodes (à induction). s19Jarvinen, P. O.: "On the Use of Magnetohydrodynamics During High Speed Reentry," NASA-CR-206, avril 1965.